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uct mixture (up to C10) was analyzed by GLC (4 m silicone 
oil on Chromosorb P at 1000C) using an internal standard 
technique. The products, viz., butadiene, benzene, 1,2-dim-
ethylenecyclohexane, 2, and tetralin, 3, were identified by 
GLC-mass spectrometry (MS 12), and product recovery 
(in terms of reactant loss) was at least 86% and probably 
greater.2 Analysis of the C14 fraction (Carbowax 20M on 
Universal B at 130 0C) revealed the presence of two minor 
products amounting to ca. 1% of the total reactant and 
product. These were identified as C u H i 8 isomers by mass 
spectrometry but have not as yet been further character­
ized. The division between major product pathways as indi­
cated by the ratio [3]/[2] averaged at 1.55 although a 
slight trend was apparent with time from a low of 1.43 (at 
24% conversion) to 1.72 (at 100% conversion). The prod­
ucts, and product mixtures, were stable under the condi­
tions of the experiments. The reaction followed unimolecu-
lar kinetics and a rate constant, k = (3.5 ± 0.3) X 10 - 4 s_ 1 , 
was obtained for total product formation. 

In the delineation of the mechanism of this reaction a 
likely initial fate of 1 appears to us to be transformation to 
tricyclo[8.4.0.03-8]tetradeca-l10,4,6-triene (4), by means of 
a sigmatropic 1,3 carbon shift. Concomitant symmetry-for­
bidden [4 + 4] cycloreversion to 2 and benzene also seems 
probable on the analogy of the pyrolysis of cycloocta-1,5-
diene3 (Scheme II) studied by Srinivasan and Levi. Al-
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Thermal Decomposition of Tricyclo[6.4.0.23'6]tetradeca-
l(8),4,13-triene. A Process Involving a Series of 
Intramolecular and Retro-Diels-Alder Reactions 

Sir 

During the course of routine investigation of the thermal 
stability of the previously prepared1 1,4-1',4' photoadduct 
of 1,2-dimethylenecyclohexane and benzene, 1 (the title 
compound), we discovered, in addition to the thermal rever­
sal of the photoformation reaction, a second but unexpected 
pathway leading to the formation of butadiene and tetralin 
(Scheme I). The continuing interest in valence bond isomer-
ization processes prompts us to report this result and point 
out the possible mechanistic implications. 

Scheme I 
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The reaction was made the subject of a brief kinetic 
study using the sealed ampoule technique; 6.8-^mol por­
tions of the reactant2 were sealed under vacuum in 2.7 cm3, 
base-washed Pyrex tubes and heated (stirred salt thermo­
stat) for periods of up to 4.5 h at 453.6 ± 0 . 1 K. The prod-

though we offer no firm conclusion as to the detailed mech­
anism of these processes, we note that the biradical, 5, is an 

If 

energetically viable intermediate in our case.4 4 itself may 
now augment the yields of 2 and benzene by symmetry al­
lowed [4 + 2] cycloreversion, the retro-Diels-Alder reac­
tion, but in order to lead to the other products, we propose 
that 4 undergoes competitive internal [4 + 2] cycloaddition, 
an example of the intramolecular Diels-Alder process6-8 

leading to the hitherto unknown pentacy-
clo[8.4.0.03-8.0,-4.07'10]tetradec-5-ene (6). This highly 
strained hydrocarbon9, by virtue of its symmetry, may now 
either revert to 4 or proceed to the propellatriene, tricyclo-
[4.4.4.01,6]tetradeca-2,4,8-triene (7), in both cases by retro-
Diels-AIder processes. 7, by means of a further retro-Diels-
Alder reaction can now lead to the observed products tetra­
lin, 3, and butadiene. These proposals are summarized in 
Scheme III. 

It remains to be shown whether either of the two minor 
isomeric C14H18 species observed corresponds to either of 
the intermediates 4 or 7, but in any case these latter must 
be thermally labile to fit our scheme. The aromatization oc­
curring during retro-Diels-Alder reaction of 4 and 7 to 
products undoubtedly provides a driving force but the ques­
tion of whether it is sufficient will have to await a direct 
test. The intramolecular isomerization of 4 must also be 
facile to compete successfully with the decomposition. 
Again, this must await a direct test, but favorable omens 
are provided by analogous intramolecular Diels-Alder reac-
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tions implicated in the rearrangements of annulated bicy-
clo[4.2.0]octatrienes6 and the degenerate reactions of cy-
clooctatetraene7 studied by Paquette and co-workers and 
also in the thermal behavior of several unsaturated bicy-
clo[4.2.2] and [4.2.1] species.8 

In order to add weight to these proposals, the specifically 
labeled 3,4,5,6,13,14-hexadeuterio analogue of 1, prepared 
by photoaddition of 2 to hexadeuteriobenzene, was also py-
rolyzed, and the products were analyzed for deuterium con­
tent. The mass spectra of 2 and of benzene were in accord 
with complete retention of all deuterium in the benzene, 
while those of 3 and butadiene showed that these molecules 
were dt, and di, respectively.12 Additionally samples of tet-
ralin {(!4) and butadiene (^2) were obtained by preparative 
GLC and their NMR spectra recorded. 

The absence of absorptions (<2% of those of tetralin-
H12) in the aromatic region for the tetralin {d$) indicated 
no aromatic protons and characterized the tetralin as the 
2,3,4,5-tetradeuterio derivative. The N M R spectrum of the 
butadiene {di) consisted of two simple absorptions 
(T-(CCl4) 4.90 (s, 1 H) and 4.96 (s, 1 H)) with negligible 
absorption in the T 3.0-4.5 region (<4% of that for butadi­
ene He). The observed signals coincide with those of the 
geminal protons on Ci and C4 in fully protonated butadiene 
and the absence of other absorptions characterizes the buta­
diene as the 2,3-dideutero derivative. Scheme III traces, by 
means of asterisks, the fate of the deuterium label through 
the various isomers in the proposed mechanism and it can 
be seen that the product isotopic pattern observed is just 
that expected. 

Further investigations of this mechanism and of the ther­
mal stability of the proposed intermediates are under way in 
our laboratory. 
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Oxygen Binding to Mercaptide-Heme Complexes. 
Models for Reduced Cytochrome P-450 

Sir: 

The sustained interest in studying oxygen binding to he-
moproteins had led, in the past 2 years, to the preparation 
of model systems, for both oxymyoglobin and oxyhemoglo­
bin. '~7 In the majority of these systems, the presence of a 
nitrogen base at the fifth coordination site of the iron(II) 
porphyrin was found to be important for heme oxygenation. 
In this communication we wish to report the binding of oxy­
gen to a heme that contains a mercaptide ion as the axial Ii-
gand. 

We recently described the preparation of a model com­
pound for reduced cytochrome P-450 as well as its CO com­
plex, in which n-butyl mercaptide ion, whose reactivity was 
enhanced by using a crown ether cation scavenger, served as 
axial ligand for the protoheme.8'9 This compound bound 
CO reversibly and exhibited striking spectral resemblances 
to those of the P-450 enzyme. However, when this com­
pound was exposed to O2 at ambient temperature, a drastic 
spectral change was observed presumably due to the fol­
lowing reactions: oxygenation of heme, autoxidation of 
heme, and oxidation of the mercaptide ion which would not 
only decrease the effective concentration of mercaptide 
available for heme coordination but could aslo result in the 
production of oxidation products capable of binding to the 
heme. Since all of these reactions could take place simulta­
neously spectral evidence for the oxygen binding to heme 
was ambiguous when the observations were made at room 
temperature. 

It was found, nevertheless, that at lower temperatures the 
latter two reactions were sufficiently inhibited to allow us to 
observe clean, and reversible, oxygen binding. Thus at —45° 
addition of O2 to the heme-mercaptide complex in dimeth-
ylacetamide (DMA) resulted in the spectral change a —• b 
in Figure I.10 The spectrum of the oxygen adduct showed 
no deterioration after 1' h under these conditions. Addition 
of excess cold pyridine to this solution displaced O2 and re-
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